APPROXIMATE ANALYTIC RELATIONSHIP FOR THE
EFFICIENCY OF A THIN RADIATING BAR

V. V. Morozov UDC 536.3

An approximate relationship between the efficiency of a thin radiating bar and the dimension-
less thermal-conductivity parameter is proposed. The temperature distribution over the bar
length is obtained for a wide range of values of this parameter.

We shall consider the efficiency and the temperature distribution for thin bars (fins) of constant cross
section and finite length, radiating into a medium at absolute zero temperature; there are no internal heat
sources and no incident radiation. A constant temperature T, is maintained at one end of the bar, while the
temperature over a bar cross section is also taken to be constant. We neglect heat exchange at the second
end.

The bar efficiency is defined as the ratio of the heat actually emitted to the heat that the bar would
supply if its entire surface were at the same temperature, equal to the temperature T, of the base:

Q, .
n= oeuTol o

Many studies, including (1, 2] have given graphical relationships for determining the efficiency; here
we propose an approximate analytic relationship.

For the given bar, the equation of the steady-state heat~conduction process has the form

BT _ oy T, (2

dx? Af

Introducing the dimensionless temperature 6 = T /T and the length X =x/1, we can write (2) as

gd;%“ = Net, (3)
where
oeu Tl (4
N =
Af

is the bar thermal-conductivity parameter; for a rectangular fin, N = osT%lz/A(‘S .

The heat emitted by the bar is found as
T, d8|
= A =L . (5)
% J I dX lxeo

Integrating, we find
de

— = — V04N (6° — ),
5 v OAN ( )

where 0; = GIX=1' Then from (1), (5), (6), and (4) we have
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TABLE 1. Bar Efficiency and Temperature at End for Various
Values of Parameter N

- [
Found'by 9 From Eq. : From Eq, From Eq. From Eq. (20)
tegration (8) (18) 19)
N
0 | n no|om % 8 Jf’ezv %) 8 | %0, % o 80, %

0,03514 10,9834/0,9565/0,9588 0,24{0,9833—0,01%0,9834 0 0,9833 | —0,01
0,09752 |0,9578|0,8923/0,8967| 0,49,0,9573/—0,050,9577) —0,01 0,9575 | --0,03
0,2028  10,9224/0,8095/0,8146| 0,63|0,9212/—0,13/0,9222; —0,02 0,9217 | —0,08
0,4804  10,8561:0,6707|0,6741; 0,51/0,8540,—-0,25/0,8558 —0,04 0,8549 . —0,14
0,9849 0,780710,53700,5375l 0,09'0,7801|—0,08|0,7799| —0,1 0,7800 | —0,09
2,278 O,677550,3880‘0,3865;—»0,39‘0,6837 0,92/0,6717} —0,86 0,6777 | 0,03
4,017 0,6038:0,3026/0,3010,—0,530,6186] 2,45/0,5897| —2,34 0,6041 0,05
4,806 0,58060,2788/0,2772—0,57|0,5985  3,08/0,5627| —3,08 0,5806 0

6,797 0,5362|0,2372|0,2358—0,59/0,5610:  4,62/0,5098] —4,92 0,535¢ | —0,15
9,462 0,49500,20250,2014~0,54‘0,5267 6,40/0,4588) —7,31 0,4928 | —0,44

15,14 0,43920,16120,1604——0,50\0,4810 9,52/0,3871] —11,86 | 0,4341 —1,16
20,37 0,4058/0, 1394 0,1388-0,43}0,4539 11,850,3433' —15,40 | 0,3986 | —1.77
0.6325
n=-—=1 =0 (0
i N

The relationship between the dimensionless temperature §; at the end and the parameter N is found
in [1, 2] by numerical integration; graphical relationships are then given for the efficiency as a function of
N.

Here we propose an analytic relationship for n = {(N}, obtained by trial and error. It takes the form

0.6325 I

(8)

T3 N+r04 3 2BNF1
and provides sufficient accuracy for engineering purposes, whatever the value of N. Table 1 shows 7 for
the N = 0-20 range; the values were found from Eq. (8). For comparison, we have also shown 71 as found
from Eq. (7), where 6; was found by numerical integration of (6) by the method of [2]; the substitution y
= 6701 —1 was made, with integration step Ay = 0.02. These values are in good agreement with the curves
of [1, 2]. Table 1 also shows the values of Bl.

As we see, the results obtained by means of Eqg. (8) differ from those found by integration by no more
than 1%. When N = 10, we can use the simpler formula

0.6325
VN (9)
The proposed relationship (8) can be used to obtain approximate analytic expressions for the heat flux

in any bar cross section, and for the temperature distribution over the bar length for a wide range of values
of N.

From (1) and (8), the heat flux through the base of the bar is

Q = _oeulTs (10)
T V2EN +1°
The heat flux through a bar cross section, a distance x from the base is
0, — ool =X o6 (11
1 95N (1 — XPEe*+1
On the other hand, with allowance for (6),
Q. =M L2 TANE =6 (12)
Equating the right sides of (11) and (12), after certain algebraic manipulations we obtain
0° — 0% = 2.5N (1 — X)? 0%5. (13)
After substitution of (13) into (6) we have
de
— = — N (1 —X)03/2052,
X ( ) ; (14)
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TABLE 2. Temperature Distribution Over Bar Length for Various
Values of Parameter N ‘

| |
X 0 0,08857) 0,1797] 0,2733 | 0,4668 | 0,6670 {1,0000
N=0,4804 By 1,000 | 0,9733 0,9493) 0,9281 | 0,8938 | 0,8706 |0,8540
L] 0,9994) 0,9725 0,9483] 0,9270 | 0,8927 | 0,8694 |0,8549
a4, % | —0,06 [—0,08 —0,11 |—0,12 [|-0,12 0,14 10,1
X 0 0,08901; 0,2386| 0,4055 | 0,5884 | 0,7171 {1,000
N=2,278 Uy 1,000 | 0,9296 0,840l 0,7702 | 0,7198 | 0,6970 [0,6775
0 1,00 } 0,9317 0,8419) 0,7714 | 0,7204 | 0,6974 |0,6777
58, % 0,10 0,23 0,21 0,16 0,08 0,06 (0,03
X 0 0,06213; 0,1321| 0,2509 | 0,4841 | 0,6982 [1,000
N=14,806 8, 1,000 | 0,9246 0,8570| 0,7692 | 0,6600 | 0,6062 |0,5806
0 0,9929] 0,9233 0,8578| 0,7708 | 0,6609 | 0,6064 |0,5806
a6, % | —0,7t |—0,14 0,09 0,21 0,14 0,03 10
X 0 0,08136] 10,2136 0,3313 | 0,4637 | 0,7140 |1,000
N=6,797 0y 1,000 | 0,8880 0,7628) 0,6868 | 0,6264 | 0,5599 |0,5362
i 0,9796; 0,8780 0,7610, 0,6860 | 0,6257 | 0,5589 |0,5354
3, % | —2,04 —1,13 -0,24 {—0,12 [|-0,11 |—0,18 |—0,15
X 0 0,04449] ©0,1120{ 0,2844 | 0,4018 | 0,7268 {1,000
N=9,462 9y 1,000 | 0,9232 0,8198] 0,6792 | 0,6139 | 0,5168 |0,4950
L] 0,9589| 0,8963 0,8169; 0,6742 | 0,6102 | 0,5144 |0,4928
30, % | —4,11 |—2,9 —0,3 |-0,74 |-0,6 —0,46 |—0,44
X 0 0,05385 - 0,1190| 0,2802 | 0,3954 | 0,7415 {1,000
N=15,14 0 1,000 | 0,8872 0,7871] 0,6248 | 0,5626 | 0,4586 |0,4392
0 0,9102| 0,8303 0,7518/ 0,6098 { 0,5518 | 0,4526 |0,4341-
a8, % | —8,98 |—6,41 —4,48 |—2,40 |—1,92 [-—1,31 |—1,16
X 0 0,02954| 0,08185 0,1690 | 0,3773 | 0,7491 {1,000
N=20,37 0 1,000 | 0,9240 ; 0,8198 { 0,6991 | 0,5377 | 0,4237 |0,405
[} 0,8682| 0,8220 | 0,7517 | 0,6596 | 0,5206 | 0,4152 |0,3988
a0, % |—13,18 |—11,04 |-8,31 |-—5,656 [—3,18 |—2,0i [—1,7

Note: 6; determined by integration, € found from Eq. (17).

After separating variables and integrating, we have
F0) =67 4 025N0%%(1 — X)2 = C, (15)
C = [(B)xmo = f (O))x1 = 1 + 0.25N0* = o772, (16)
Then the temperature in any bar cross section x is expressed as

I
§ = . (17)
[ 6777 —0.25N87*(1—X)2]?

The value of 8; can be found from (7) and (8):
1

Y 25N +1
On the other hand, from (16) and (18) we obtain
1
el = { 0,25N 2 (19)
(. T A )

Table 1 shows results obtained from (18) and (19); as we see, the two formulas yield good agreement
with the results of numerical integration for the N = 0~2 range (the discrepancy does not exceed 1%). As N
increases, the accuracy of the formulas drops; Eq. (18) gives values of o1 that are too high, and Eq. (19)
gives results that are too low. Over a wide range of N values, we obtain good agreement with the results
of integration if we represent 0; as the arithmetic mean of the values yielded by Egs. (18) and (19):

1 . i
V 25N + 1 <1+_BEL ’
) 25N +1
As we see from Table 1, the difference between the values of 6; as found from (20) and by integration does
not exceed 1% over the N = 0-10 range, and 2% over the N = 10-20 range. This formula can be recommended
for determination of 0; over the N = 0~20 range.

8, =0.5 (20)
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To find the limits of applicability of Eq. (17) we calculated the actual temperature distribution over
the bar length for several values of N. Here we made use of the 6;—N relationship obtained by numerical
integration.

For any cross section x along the bar length, the thermal-conductivity parameter for the bar section
! —x can be represented as
=N (1 — X)? 6% (21
while the dimensionless temperature of the bar end, represented in terms of the temperature at the cross
section x, fry = TZ/TX, will be a function of Ny. The temperature at section x is found as
8
elx

b= (22)
From the value found for ¢ and Eq. (20), we can determine the corresponding value of X. Thus specifying

a value for 0, for any value of the thermal-conductivity parameter we can successively determine 5, Ny,
X.

Table 2 shows the results of these computations; we have also given the values of ¢ found from Eq.
(17); the value of §; was found in accordance with (20).

As we see from Table 2, in the 0-5 range of N values, the difference between the results found from
(17) and those obtained by integration does not exceed 1%; as N increases further, Eq. (17) gives values of
07 that are too low; when N =10, the difference reaches 5% for small values of X. Results obtained from
(17) are also in good agreement with the temperature-distribution curves for fins with N = 0.5 and N = 2
[1]. Formula (17) can be recommended for determination of the temperature distribution over the length
of a bar for N = 0-5 throughout the entire range of X, and for bars with N = 5-10 for X = 0.1,

We can use (14) and {17) to obtain another expression for the heat flux in any bar cross section:

AT N (1 — X) 88" (23)
(07 —0.25N0%2(1—X)2]*

Q. =

The limits of applicability of this formula are the same as for (17).

Thus we can use the proposed analytic relationship (8) not only to determine the efficiency of a thin
radiating bar for any value of N, but also to derive approximate expressions for the heat~flux and tempera~
ture distributions along the bar: (11), {17)-(20), (22), over a fairly wide range of variation in N, encompas-
sing most of the cases found in practice. Equation (8) can also be used to optimize radiating systems.

NOTATION
Q is the heat flux;
T is the temperature;
T is the Stefan —Boltzmann constant;
£ is the emissivity;
A is the thermal conductivity;
u is the perimeter;
f is the bar cross section;
26 is the thickness of a rectangular fin;
n is the efficiency of the bar or fin;
b4 is the coordinate;
{ is the length of the bar or fin;

N = geuT§I?/Af is the dimensionless thermal-conductivity parameter;
8= T/T0 is the dimengionless temperature;

X =x/1 is the dimensionless length.

Subscripts

0  refers to parameters at the beginning of the bar;
I refers to parameters at the end of the bar.
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